
  

 

  
Abstract—This research paper deals with the concept of fuzzy 

semi – alpha compact space as well as fuzzy semi alpha – closed 
space setting of a fuzzy topological space. We also investigate the 
relationships between fuzzy semi alpha – almost compactness and 
fuzzy semi alpha – nearly compactness.  We present a number of 
properties and characterizations of these notions of fuzzy semi – 
alpha compact space, fuzzy semi alpha – closed space, fuzzy semi 
alpha – almost compact space and fuzzy semi alpha – nearly 
compactness in fuzzy topological spaces.   
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set, Fuzzy semi – alpha closed set, Fuzzy semi – alpha compact 
space, Fuzzy semi – alpha closed space, Fuzzy semi alpha – almost 
compactness, Fuzzy semi alpha – nearly compactness  

I. INTRODUCTION 
In [12], Zadeh has introduced the important concept 
of fuzzy sets. In [Hakeem, 2009], Hakeem, etc. have 
introduced the concept of fuzzy semi α − open sets 
in fuzzy topological space. The notion of fuzzy 
subsets naturally plays a significant role in the study 
of fuzzy topology which was introduced by Chang 
[Chang, 2004]. In [2009], Hakeem, etc. introduced 
the notion of fuzzy semi α −  open sets in fuzzy 
topology. The purpose of this paper is devoted to 
introduce and study the concepts of semi 
α − compactness and semi α − closed spaces in 
fuzzy setting. Using fuzzy filterbases, we 
characterize fuzzy semi α − compactness and fuzzy 
semi α − closed spaces. We also explore some 
expected basic properties of these concepts.  
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II. PRELIMINARIES 

Throughout this paper ( ),X τ  and ( ),Y σ  or simply 
by X  and Y respectively mean fuzzy topological 
spaces. A fuzzy point tx  in X  is a fuzzy set having 
support x X∈  and value ( , ].0 1t ∈  If A  is a fuzzy 
set then ( ) ,Int A  ( ) ,Cl A  cA  and ( )S A  will 
denote respectively, the interior of ,A  the closure of 

,A  complement of A  and the support of .A  For 
two fuzzy sets A  and ,B  we shall  write AqB  
( )AqB  to mean that A  is quasi coincident (not 
quasi coincident) with ,B  . .,i e  there exists x X∈  
such that ( ) ( ) 1A x B x+ >  ( ) ( )( )1 .A x B x+ ≤  

 
DEFINITION 2.1. Let X  be a non empty set and τ  
be a family of fuzzy subsets of .X  Then τ  is called 
a fuzzy topology on X  if it satisfies the following 
conditions: ( )i  0X  and 1X  belong to τ  ( )ii  Any 

union of members of τ  is in τ . ( )iii  Any finite 
intersection of members of τ  is in τ . The pair 
( , )X τ  is called a fuzzy topological space.  
 
DEFINITION 2.2. A fuzzy set A  in a fuzzy 
topological space ( , )X τ  is called a fuzzy 

openα − set if ( )( ) .A Int Cl Int A ≤    

 
DEFINITION 2.3. A fuzzy subset A  of a fuzzy 
topological space ( , )X τ  is called a “fuzzy semi 

openα − set” if  there exists a fuzzy openα − set U  
in X  such that ( ) .U A Cl U≤ ≤  The family of all 
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fuzzy semi openα −  sets of X  is denoted by 
( ),FS O Xα τ  or simply by ( ) .FS O Xα   

 
DEFINITION 2.4. The complement of fuzzy semi 

openα −  set is called “fuzzy semi closedα − set”. 
The family of all fuzzy semi closedα −  sets of X  
is denoted by ( ),FS C Xα τ  or simply by 

( ) .FS C Xα   
 
DEFINITION 2.5. Let  U be a fuzzy set in a fuzzy 
topological space ( , ).X τ  The fuzzy semi 

closureα − and fuzzy semi int eriorα −  of U  are 
defined as follows: 

( ) ( ){ }: , , ;fs Cl U A U A A FS C Xα = ≤ ∈ α τ  

( ) ( ){ }: , , .fs Int U A U A A FS O Xα = ≥ ∈ α τ  

It is obvious that ( ) ( ) ccfs Cl U fs Int U α = α   and 

( ) ( ) .
ccfs Int U fs Cl U α = α   

 
THEOREM 2.6. Let A  be any fuzzy subset of a 
topological space ( , )X τ . Then the following 
statements are equivalent: 
( ) ( ) .i A FS O X∈ α   

( )ii  There exists a fuzzy open set say G  such that 

( )( ) .G A Cl Int Cl G ≤ ≤    

( ) ( )( )( ) .iii A Cl Int Cl Int A ≤    

( ) ( ) ( )( )( )( ) .iv Cl A Cl Int Cl Int A =   
 

 
THEOREM 2.7. Let A  be any fuzzy subset of a 
topological space ( , )X τ . 
( )i  Any union of fuzzy semi openα −  sets is fuzzy 
semi openα −  set. 
( )ii  Any intersection of fuzzy semi closedα −  sets 
is fuzzy semi closedα −  set. 
 
REMARK 2.8. The Intersection (Union) of any two 
fuzzy semi openα −  (fuzzy semi )closedα −  sets 
need not be fuzzy semi openα −  (fuzzy semi 

)closedα −  set. 
 
THEOREM 2.9. A fuzzy set A  in a fuzzy 
topological space ( , )X τ  is fuzzy semi openα −  set 
if and only if for every fuzzy point p A∈  there 
exists a fuzzy semi openα −  set pM A≤  such that 

.pp M∈   
 
THEOREM 2.10. Let A  be a fuzzy semi openα −  
set in a fuzzy topological space ( ), .X τ  Let B  be a 

fuzzy set in X  satisfying ( ) .A B Cl A≤ ≤  Then B  
is fuzzy semi openα −  set in .X  
 
THEOREM 2.11. Let A  be a fuzzy semi openα −  
set in a fuzzy topological space ( ), .X τ  Let B  be a 

fuzzy set in X  such that ( ) .Int A B A≤ ≤  Then B  
is fuzzy semi openα −  set in .X  
 
DEFINITION 2.12. [5] Let a function 

( ) ( ): , ,f X Yτ → σ  from a fuzzy topological 

space ( ),X τ  into a fuzzy topological space ( ),Y σ  
is called  a fuzzy semi continuousα − if and only if 

( )1f B−  is fuzzy semi openα −  (fuzzy semi 
closedα − ) set in X for each fuzzy open (fuzzy 

closed) set B in Y.  
 
DEFINITION 2.13. [5] A  function 

( ) ( ): , ,f X Yτ → σ  from a fuzzy topological 

space ( ),X τ  into a fuzzy topological space ( ),Y σ  
is called  a fuzzy semi * continuousα −  if and only 
if ( )1f B−  is fuzzy semi openα −  (fuzzy semi 

closedα − ) set in X for each fuzzy semi openα −  
(fuzzy semi closedα − ) set B in Y.  
 
LEMMA 2.14. Let ( ) ( ): , ,f X Yτ → σ  be a 
function. Then the following statements are 
equivalent: 
( )a f  is fuzzy semi * .continuousα −  

( ) ( ) ( ) ,b f fs Cl U fs Cl f U   α ≤ α     for every 

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 5, 2018

ISSN: 2313-0571 7



  

 

fuzzy set U in X.  
PROOF. ( ) ( ) :a b⇒  Let U be a fuzzy set of X, 

then ( )fs Cl Uα  is fuzzy semi .closedα −  By (a) 

( )( )1f fs Cl f U−  α   is fuzzy semi closedα −  and 

therefore it follows that  

( )( ) ( )( )( )1 1 .f fs Cl f U fs Cl f fs Cl f U− −   α = α α   

Since ( )1 ,U f f U−  ≤    we have 

( ) ( )( )
( )( )( ) ( )( )

1

1 1 .

fs Cl U fs Cl f f U

fs Cl f fs Cl f U f fs f U

−

− −

 α ≤ α ≤ 
   α α = α  

 

Hence ( ) ( ) .f fs Cl U fs Cl f U   α ≤ α     

( ) ( ) :b a⇒  Let V be a fuzzy semi closedα −  set in 

Y. By (b) if ( )1 ,U f V−=  then 

( ) ( )( )( )1 1 1fs Cl f V f fs Cl f f V− − −  α ≤ α ≤     

( ) ( )1 1 .f fs Cl V f V− − α =    Since 

( )1 1 ,f V fs Cl f V− − ≤ α    then 

( ) ( )1 1 .f V fs Cl f V− − = α    Hence ( )1f V−  is 

fuzzy semi closedα −  set in X. Hence f  is fuzzy 
semi * .continuousα −  
 
LEMMA 2.15. Let ( ) ( ): , ,f X Yτ → σ  be a 
function. Then the following statements are 
equivalent: 
( )a f  is fuzzy semi .continuousα −  

( ) ( ) ( ) ,b f fs Cl U fs Cl f U   α ≤ α     for every 

fuzzy set U in X. 
 
DEFINITION 2.16. A collection of fuzzy subsets ξ  
of a fuzzy topological space ( ),X τ  is said to form a 
fuzzy filterbase if and only if for every finite 

collection { }: 1,2, ..., ,jA j n=  
1

0 .
n

j X
j

A
=

≠  

 
DEFINITION 2.17. A collection µ  of fuzzy sets in 
a fuzzy topological space ( ),X τ  is said to be cover 
of a fuzzy set U  of X if and only if 

( ) 1 ,X
A

A x
∈µ

 
=  

 


 for every ( ) .x S U∈  A fuzzy 

cover µ  of a fuzzy set U  in a fuzzy topological 
space ( ),X τ  is said to have a finite subcover if and 
only if there exists a finite subcollection 

{ }: 1,2, ...,jA j nη = =  of µ  such that 

( ) ( )
1

,
n

j
j

A x U x
=

  ≥ 
 
  for every ( ) .x S U∈  

 
DEFINITION 2.18. A fuzzy topological space 
( , )X τ  is said to be almost compact if and only if 
every open cover of X has a finite subcollection 
whose closures cover X.  
 
DEFINITION 2.19 Let ( ),X τ  and ( ),Y σ  be two 
fuzzy topological spaces. A mapping 

( ) ( ): , ,f X Yτ → σ  is said to be fuzzy strongly 

semi openα −  if ( )f V  is fuzzy semi openα −  set 
of 𝑌𝑌 for every fuzzy semi openα −  𝑉𝑉 of  𝑋𝑋. 
 
 
 

III. FUZZY SEMI COMPACTα − SPACE 
DEFINITION 3.1. A fuzzy topological space ( , )X τ  
is said to be fuzzy semi compactα −  if and only if 
for every family µ  of fuzzy semi openα −  sets 

such that 1 ,X
A

A
∈µ

=


 there exists a finite subfamily 

η ⊆ µ  such that 1 .
∈η

=
 X
A

A  

 
DEFINITION 3.2. A fuzzy set U  in a fuzzy 
topological space ( , )X τ  is said to be fuzzy semi 

compactα −  relative to X  if and only if every 
family µ  of fuzzy semi openα − sets such that 

( )
A

A U x
∈µ

≥


there exists a finite subfamily η ⊆ µ  

such that ( )
∈η

≥


A

A U x  for every ( )x S U .∈  
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THEOREM 3.3. A fuzzy topological space ( , )X τ  
is fuzzy semi compactα − if and only if for every 

collection { }: ∈jA j J of fuzzy semi closedα −  

subsets of X  having the finite intersection property, 
0 .

∈

≠
 j X
j J

A   

PROOF. Let { }: ∈jA j J  be a collection of fuzzy 

semi closedα − sets with the finite intersection 
property. Suppose that 0 .

∈

=
 j X
j J

A  Then 

1 .
∈

=


c
j X

j J

A  Since { }: ∈c
jA j J  is a collection of 

fuzzy semi openα − cover of X.  Then from the 
fuzzy semi compactnessα −  of X  it follows that 
there exists a finite subset F J⊆ such that 

1 .
∈

=


c
j X

j F

A  Then 0
∈

=
 j X
j F

A which gives a 

contradiction and therefore 0 .
∈

≠
 X
j J

A  

Conversely, let { }: ∈jA j J  be a collection of fuzzy 

semi openα − cover of X.  Suppose that for every 

finite subset F J,⊆  we have 1 .
∈

≠
 j X
j F

A  Then 

0 .
∈

≠


c
j X

j F

A  Hence { }: ∈c
jA j J  satisfies the finite 

intersection property. Then from the hypothesis we 
have 0

∈

≠


c
j X

j J

A  which implies 1j X
j J

A
∈

≠


 and this 

contradicts the fact that { }: ∈jA j J  is a fuzzy semi 

openα −  cover of X.  Thus X  is fuzzy semi 
compact.α −  

Now, we give some results of fuzzy semi 
compactnessα − in terms of fuzzy filterbases. 

 
THEOREM 3.4. A fuzzy topological space ( , )X τ  
is fuzzy semi compactα −  if and only if for every 

filterbases ξ  in X, 0 .
∈ξ

≠
 X
G

G   

PROOF. Let µ  be a fuzzy semi openα − cover of X  

and µ  has no finite subcover. Then for every finite 
subcollection  { }1 2 nA ,A ,...,A  of µ , there exists 

x X∈  such that ( )jA x 1< for every j 1,2, ... ,n.=  

Then ( ) 0,>c
jA x so that ( )

1

0 .
=

≠


n
c
j X

j

A x  Thus 

( ){ }: ∈ µc
j jA x A  forms a filterbases in .X  Since 

µ  is fuzzy semi openα − cover of ,X  then 

1
∈µ

=


j

j X
A

A  for every ∈x X  and therefore we 

obtain ( ) ( ) ( ) 0 ,
∈µ ∈µ

α = = 

j j

c c
j j X

A A
fs Cl A x A x  

which is a contradiction. Therefore every fuzzy 
semi openα −  cover of X has a finite subcover and 
hence X is fuzzy semi compact.α −  

Conversely, suppose that there exists a filter bases 
ξ  such that ( ) 0 ,

∈ξ
α = X

G
fs Cl G so that 

( )( ) ( ) 1
∈ξ

 α = 
 


c

X
G

fs Cl G x  for every ∈x X and 

hence ( )( ){ }:µ = α ∈ ξ
c

fs Cl G G  is a fuzzy semi 

openα − cover of X. Since X is fuzzy semi 
compact,α −  then µ  has a finite subcover.  Then 

( )( ) ( )
1

1
=

 α = 
 


n c

j X
j

fs Cl G x  and hence 

( )
1

1 ,
=

  = 
 


n
c
j X

j
G x  so that 

1
0

=
=

n

j X
j

G  which is a 

contradiction, since 1 2, , ...., nG G G  are members of 
filterbases ξ . Therefore 0X

G
G

∈ξ
≠  for every 

filterbases .ξ   
 
THEOREM 3.5. A fuzzy set U  in a fuzzy 
topological space ( , )X τ  is fuzzy semi 

compactα −  relative to X if and only if for every 
filter bases ξ  such that every finite of members of 
ξ  is quasi coincident with U,  

( ) 0 .X
G

fs Cl G U
∈ξ

 α ≠ 
 
   

PROOF.  Let U  not be fuzzy semi compactα −  
relative to X,  then there exists a fuzzy semi 

openα −  cover µ  of U  such that µ  has no finite 
subcover { }1 2, , ..., .nA A Aη =  Then 
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( ) ( )
1

n

k
k

A x U x
=

  < 
 
  for some ( )x S U ,∈  so that 

( ) ( )
n

c c
j

j 1

A x U x 0
=

 
> ≥  

 


 and hence  

{ }:ξ = ∈ µcA A  forms a filter bases and 
n

c
j

j 1

A qU.
=

 
  
 


 By hypothesis 

( )( )
1

0
=

 
α ≠  

 




n
c
j X

j

fs Cl A U  and hence 

1

0 .
n

c
j X

j

A U
=

 
≠  

 




 Then for some ( ) ,x S U∈  

( ) 0 ,c
X

A
A x

∈µ

  > 
 
  that is ( ) 1 ,X

A
A x

∈µ

  < 
 
  which 

is a contradiction. Hence U  is fuzzy semi 
compactα −  relative to X.  

Conversely, suppose that there exists a filter bases 
ξ  such that every finite of members of ξ  is quasi 

coincident with U  and ( ) 0 .X
G

fs Cl G U
∈ξ

 α ≠ 
 
   

Then for every ( ) ,x S U∈  

( ) ( ) 0X
G

fs Cl G x
∈ξ

 α = 
 
  and hence 

( )( ) ( ) 1
c

X
G

fs Cl G x
∈ξ

 α = 
 
  for every ( ) .x S U∈  

Thus ( )( ){ }:
c

fs Cl G Gµ = α ∈ ξ  is fuzzy semi 

openα − cover of U.  Since U  is fuzzy semi 
compactα −  relative to X,  then there exists a 

finite subcover, say ( )( ){ }: 1,2, ..., ,
c

kfs Cl G k nα =  

such that ( )( ) ( ) ( )
1

n c

k
fs Cl G x U x

=

 α ≥ 
 
  for every 

( ) .x S U∈  Hence ( ) ( ) ( )
n

c
k

k 1
fs Cl G x U x

=

 α ≤ 
 
  

for every ( ) ,∈x S U  so that 

( ) ( )
1

,
n

k
k

fs Cl G q x U
=

 α ≤ 
 



  which is a 

contradiction. Therefore for every filter bases ξ  
such that every finite of members of ξ  is quasi 

coincident with U, ( ) 0 .X
G

fs Cl G U
∈ξ

 α ≠ 
 
   

 
THEOREM 3.6. Every fuzzy semi closedα −  fuzzy 
subset of a fuzzy semi compactα −  space is fuzzy 
semi compactα −  relative to X.  
PROOF.  Let ξ  be a fuzzy filter bases in X such 
that { }( ):Uq G G ∈ λ  holds for every finite 

subcollection λ  of ξ  and a fuzzy semi closedα −  
set U.  Consider { }* .Uξ = ξ  For any finite 

subcollection *λ  of * ,ξ  if * ,U ∉ λ  then * 0 .Xλ ≠   

If * ,U ∈ λ  and since { }{ }( )*: ,Uq G G U∈ λ −  

then * 0 .Xλ ≠   Hence *λ  is a fuzzy filter bases in 
X. Since X is fuzzy semi compact,α −  then 

( )
*

0 ,X
G

fs Cl G
∈ξ

α ≠  so that 

( ) ( ) ( ) 0 .X
G G

fsCl G U fsCl G fsCl U
∈ξ ∈ξ

   = ≠   
   
   

 Hence by Theorem 3.5, we conclude that U  is 
fuzzy semi compactα −  relative to X.  
 
THEOREM 3.7. If a function 

( ) ( ): , ,f X Yτ → σ  is fuzzy semi 
* continuousα −  and U  is fuzzy semi 

compactα −  relative to X, then so is ( ) .f U  

PROOF. Let { }:kA k K∈  be a fuzzy semi 

openα −  cover of ( )( ) .S f U  For ( ) ,x S U∈  

( ) ( )( ) ( )( ) .f x f S U S f U∈ =  Since f  is fuzzy 

semi * continuousα − , then  ( ){ }1 :kf A k K− ∈  is 

fuzzy semi openα −  cover of  ( ) .S U  Since U  is 
fuzzy semi compactα −  relative to X, there is a 
finite subfamily ( ){ }1 : 1,2, ...,kf A k n− =  such that 

( ) ( )1

1

n

k
k

S U f A−

=
≤   which implies 

( ) 1

1

n

k
k

S U f A−

=

 ≤  
 
  and then 

( )( ) ( )( ) 1

1 1
.

n n

k k
k k

S f U f S U f f A A−

= =

  = ≤ ≤    
   
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Therefore ( )f U  is fuzzy semi compactα −  
relative to Y. 
 
LEMMA 3.8.  If ( ) ( ): , ,f X Yτ → σ  is fuzzy 
open and fuzzy continuous function, then f  is 
fuzzy * continuous.α −  
PROOF. Let V  be a fuzzy semi  openα −  set in Y, 
then 

( )( )( )( )( ) ( )( )( ) .V Cl Int Cl Int V Cl Int Cl V≤ ≤   

So ( ) ( )( )( )( )1 1f V f Cl Int Cl V− −≤ ≤  

( )( )( )( )1 .Cl f Int Cl V−   

Since f  is fuzzy continuous, then 

( )( ) ( )( )( )1 1 .f Int Cl V Int f Cl V− −  =    

Also by Theorem 2.6, 

( )( ) ( )( )( )( )1 1f Int Cl V Int f Int Cl V− −  = ≤    

( )( )( ) ( )( )( )1 1 .Int f Cl V Int Cl f V− −≤  Thus 

( ) ( )( )( )( ) ( )( )( )1 1 .f V Cl f Int Cl V Cl Int Cl V− −≤ ≤

 
Hence the result.  
 
COROLLARY 3.9.  Let ( ) ( ): , ,f X Yτ → σ  be 
fuzzy open and fuzzy continuous function and X is 
fuzzy semi compact,α −  then ( )f X  is fuzzy semi 

compact.α −  
PROOF. . It follows directly from Lemma 3.8 and 
Theorem 3.7. 
 
DEFINITION. 3.10. A function 

( ) ( ): , ,f X Yτ → σ  is said to be fuzzy semi 
openα − if and only if the image of every fuzzy 

semi openα −  set in X is fuzzy semi openα −  set 
in Y. 
Theorem 3.11. Let ( ) ( ): , ,f X Yτ → σ  be a 
fuzzy semi openα −  bijective function and Y is 
fuzzy semi compact,α −  then X is fuzzy semi 

compact.α −   

PROOF. Let { }jA : j J∈  be a collection of fuzzy 

semi openα − cover of X, then ( ){ }jf A j J: ∈   is 

fuzzy semi openα −  covering of Y. Since Y is 
fuzzy semi compactα − , there is a finite subset 

F J⊆  such that ( ){ }:jf A j F∈  is a cover of Y. 

But ( )1 11 1X Y j j
j F j F

f f f A A− −

∈ ∈

  = = =    
   and 

therefore X is fuzzy semi compact.α −  
 
THEOREM 3.12. ( ) ( ): , ,f X Yτ → σ  be a 
strongly semi openα −  function, bijective function 
and Y is  fuzzy semi compactα −  space, then X is 
fuzzy semi compactα −  space. 

PROOF.  Let { }jA : j J∈  be fuzzy semi openα −  

cover of X, and then ( ){ }:jf A j J∈  is fuzzy semi 

openα −  cover of  Y. Since Y is fuzzy semi 
,compactα −  there exists a finite subset 0J  of J 

such that finite family ( ){ }0:jf A j J∈  covers Y. 

But ( )
0 0

1 11 1 ,X Y j j
j J j J

f f f A A− −

∈ ∈

  = = =    
   and 

therefore X fuzzy semi .compactα −  
 
 
 
 

IV.  FUZZY SEMI CCLOSEDα −  SPACES 
DEFINITION 4.1. A fuzzy set U  in a fuzzy 
topological space ( , )X τ  is said to be a fuzzy semi 

q nbdα −  of a fuzzy point tx  in X if there exists a 
fuzzy semi openα −  set A U≤  such that .tx qA   
 
THEOREM 4.2. Let tx  be a fuzzy point in a fuzzy 
topological space ( , )X τ  and U  be any fuzzy set of 

,X  then ( )tx fs Cl U∈ α   if and only if for every 
fuzzy semi fs q nbdα −  H of ,tx  .HqU  

PROOF. Let ( )tx fs Cl U∈ α  and there exists a 

fs q nbd Hα − of tx .HqU  Then there exists a 
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fuzzy semi openα −  set A U≤  such that ,tx qA  
which implies AqU and hence cU A .≤  Since cA  is 
fuzzy semi closedα −  set, then ( ) .cfs Cl U Aα ≤  

Since ,c
tx A∉  then ( ) ,tx fs Cl U∉ α  which is a 

contradiction. 
Conversely, suppose that ( )tx fs Cl U∉ α =  

{ }: , .A Ais fsc closed in X A Uα − ≥  Then there 
exists a fuzzy semi closedα −  set A U≥  such that 

.tx A∉  Hence ,c
tx qA H=  where H is a fuzzy semi 

openα −  set in X and .HqU  Then there exists a 
fs q nbd Hα −  of tx  with .HqU  Hence the result.  

 
DEFINITION 4.3 A fuzzy topological space ( , )X τ  
is said to be fuzzy semi closedα −  space if and 
only if for every family µ  of fuzzy semi openα −  
sets such that 1X

A
A

∈µ
=  there is a finite subfamily 

η ⊆ µ  such that ( ) ( ) 1 ,X
A

fs Cl A x
∈η

 α = 
 
  for 

every .x X∈  
 
THEOREM 4.4. A fuzzy topological space ( , )X τ  
is said to be fuzzy semi closedα −  space if and 
only if for every fuzzy semi openα −  filter bases ξ  
in X, ( ) 0 .X

G
fs Cl G

∈ξ
α ≠   

PROOF. Let µ  be a fuzzy semi openα −  cover of 
X  and let for every finite subfamily η  of ,µ      

( ) ( ) 1X
A

fs Cl A x
∈η

 α < 
 
  for some .x X∈  Then 

( ) ( ) 0c
X

A
fs Cl A x

∈η

 α > 
 
  for some .x X∈  Thus 

( )( ){ }:
c

fsc Cl A Aξ = α ∈ µ  forms a fuzzy semi 

openα −  filter bases in X. Since µ  is a fuzzy semi 
openα −  cover of X, then 0c

X
A

A
∈µ

=  which 

implies ( )( ) 0 ,
c

X
A

fs Cl fs Cl A
∈µ

 α α =  
  which is a 

contradiction.  Then every fuzzy semi openα −  
cover µ  of X has a finite subfamily η  such that  

( ) ( ) 1X
A

fs Cl A x
∈η

 α = 
 
  for every ,x X∈  Hence 

X is fuzzy semi closed.α −   
Conversely, suppose there exists a fuzzy semi 

openα − filter bases ξ   in X  such that 
( ) 0 ,X

G
fs Cl G

∈ξ
α =  so that 

( )( ) ( ) 1
c

X
G

fs Cl G x
∈ξ

 α = 
 
  for every x X∈  and 

hence ( )( ){ }:
c

fs Cl G Gµ = α ∈ µ  is a fuzzy semi 

openα −  cover of X. Since X is fuzzy semi 
closed,α −  then µ  has a finite subfamily η  such 

that ( )( ) ( ) 1
c

X
G

fs Cl fs Cl G x
∈η

 α α = 
 
  for every 

x∈ X, and hence ( )( )( ) 0 .
cc

X
G

fs Cl fs Cl G
∈η

α α =  

Thus 0X
G

G
∈η

=  which is a contradiction, since all 

the G are members of filter bases. 
 
DEFINITION 4.5. A fuzzy set U  in a fuzzy 
topological space ( , )X τ  is said to be a fuzzy semi 

closedα −  relative to X if and only if for every 
family µ  of fuzzy semi openα − β-open sets such 
that 

A
A U,

∈µ
=  there is a finite subfamily η ⊆ µ  

such that ( ) ( ) ( )
A

fs Cl A x U x
∈η

 α ≥ 
 
  for every 

( ) .x S U∈  
 
THEOREM 4.6. A fuzzy subset U  in a fuzzy 
topological space ( , )X τ  is fuzzy semi closedα −  
relative to X if and only if every fuzzy semi 

openα −  filter bases ξ  in X, 

( ) 0 ,X
G

fsc G U
∈ξ

 α = 
 
   there exists a finite 

subfamily λ  of ξ  such that ( ) 0 .X
G

G qU
∈λ

=

   

PROOF. Let U be a fuzzy semi closedα −  relative 
to X. Suppose ξ is a fuzzy semi openα −  filterbases 
in X such that for every finite subfamily λ of ξ, 

( ) ,
G

G qU
∈λ
  but ( ) 0 .X

G
fs G U

∈ξ

 α = 
 
   Then for 
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every ( ) ,x S U∈  ( ) ( ) 0X
G

fs G x
∈ξ

 α = 
 
  and 

hence ( )( ) ( ) 1
c

X
G

fs G x
∈ξ

 α = 
 
  for every 

( ) .x S U∈  Then ( )( ){ }:
c

fs Cl G Gµ = α ∈ ξ  is a 

fuzzy semi openα − cover of U  and hence there 
exists a finite subfamily λ ⊆ ξ such that 

( )( )( ) ,
c

G
fs Cl fs G U

∈λ
α α ≥  so that 

( )( )( )( ) ( )( )
cc

G G
fs Cl fs Cl G fs Cl fs Cl G

∈λ ∈λ
α α = α α 

cU≤  and hence .c

G
G U

∈λ
≤  Then 

G
G qU

∈λ



  which 

is a contradiction.  
Conversely, let U  not be a fuzzy semi closedα −  
set relative to X, then there exists a fuzzy semi 

openα −  cover µ  of U  such that every finite 

subfamily ,η ⊆ µ  ( ) ( ) ( )
A

fs Cl A x U x
∈η

 α ≤ 
 
   for 

some ( )x S U∈  and hence 

( )( ) ( ) ( ) 0
c c

A
fs Cl A x U x

∈η

 α > ≥ 
 
  for some 

( ) .x S U∈  Thus ( )( ){ }:
c

fs Cl A Aξ = α ∈ µ  forms 

a fuzzy semi openα − β-open filterbases in X. Let 
there exists a finite subfamily 

( )( ){ }:
c

fs Cl A Aα ∈ η  such that 

( )( ) .
c

A
fs Cl A qU

∈η

 α 
 



  Then ( ) .
A

U fs Cl A
∈η

≤ α  

So there exists a finite subfamily η ⊆ µ  such that 
( )

A
fs Cl A U

∈η
α ≥  which is a contradiction. Then 

for each finite subfamily 

( )( ){ }:
c

fs Cl A Aλ = α ∈ η  of ,ξ  we have 

( )( ) .
c

A
fs Cl A qU

∈η

 α 
 
  Hence by the given 

condition ( )( ) 0 ,
c

X
A

fs Cl fs Cl A U
∈µ

 α α ≠ 
 
   so 

there exists ( )x S U∈  such that 

( )( ) ( ) 0 .
c

X
A

fs Cl fs Cl A x
∈µ

 α α > 
 
  Then 

( )( )( ) ( )
cc

A
fs Cl fs Cl A x

∈µ

 α α = 
 


( )( ) ( ) 1 ,X
A

fs Cl fs Cl A x
∈µ

 α α < 
 
  and hence 

( ) 1X
A

A x
∈µ

  < 
 
  which contradicts the fact that µ is 

a fuzzy semi openα −  cover of .U  Therefore U  is 
fuzzy semi closedα −  relative to X. 
THEOREM 4.7. Let ( ) ( ): , ,f X Yτ → σ  be a 
fuzzy semi continuousα −  surjection function. If X 
is fuzzy semi closedα −  space, then Y is almost 
compact.  
PROOF.  Let { }jA : j J∈  be a fuzzy open cover of 

Y. Then ( ){ }:jf A j J∈  is fuzzy semi openα −  

cover of X. By hypothesis, there exists a finite 
subset JF ⊆  such that 

( )( ) ( )1 1 .j X
j F

fs Cl f A x−

∈

 α = 
 
  From the 

surjectivity of f   and by Lemma 2.6, 

( ) ( )( ) ( )11 1Y X j
j F

f f fs Cl f A x−

∈

 = = α ≤ 
 
  

( )( ) ( )1 .j j
j F j F

Cl f A Cl A−

∈ ∈
=   Hence Y is almost 

compact. 
Using Lemma 2.14, we have also the following 
theorem which can be proved similarly to Theorem 
4.7. 
THEOREM 4.8. Let ( ) ( ): , ,f X Yτ → σ  be a 
fuzzy semi * continuousα −  surjection function. If 
X is fuzzy semi closedα −  space, then Y is also 
fuzzy semi closedα −  space. 
 
 
 

.V FUZZY SEMI ALMOST COMPACTNESS
and FUZZY SEMI NEARLY COMPACTNESS

α −
α −

 In this section we investigate the relationships 
between fuzzy semi compactnessα − , fuzzy semi 

almostα −  compactness, and fuzzy semi 
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nearlyα −  compactness.  
 
DEFINITION 5.1.  A fuzzy topological space  
( ),X τ  is said to be fuzzy semi almostα −  compact 
if and only if, for every family of fuzzy semi 

openα −  cover { }:jA j J∈  of 𝑋𝑋, there exists a 

finite subset 0J  of J  such that 

( )
0

1 .j X
j J

fs Cl A
∈

α =   

 
DEFINITION 5.2.  A fuzzy topological space  
( ),X τ  is said to be fuzzy semi almostα −  compact 
if and only if, for every family of fuzzy semi 

openα −  cover { }:jA j J∈  of 𝑋𝑋, there exists a 

finite subset 0J  of J  such that 

( )
0

1 .j X
j J

fs Int fs Cl A
∈

 α α =    

 
DEFINITION 5.3. A fuzzy topological space  
( ),X τ  is said  to be fuzzy  semi regularα −  if, for 
each fuzzy semi openα −  subset 𝐴𝐴 of  X,  

( ) ( ){ }, : .j jA A Fs O X fs Cl A A= ∈ α τ α ⊆   

 
THEOREM 5.4. Let ( ),X τ   be a fuzzy topological 
space. Then fuzzy semi compactnessα −  implies 
fuzzy semi nearlyα −  compactness which implies 
fuzzy semi almostα −  compactness.  
PROOF. Let ( ),X τ  be a fuzzy semi compactα −  
space. Then for every fuzzy semi openα −  cover 

{ }:jA j J∈  of 𝑋𝑋, there exists a finite subset 0J  of 

J such that 
0

1 .j X
j J

A
∈

=  Since jA  is a fuzzy semi 

openα − n set, for each ,j J∈  ( )j jA fs Int A= α  

for each .j J∈  

( ) ( )j j jA fs Int A fs Int fs Cl A = α ⊆ α α   for each 

.j J∈  Therefore it follows that  

( ) ( )( )
0 0 0

.j j j
j J j J j J

A fs Int A fs Int fs Cl A
∈ ∈ ∈

⊆ α ⊆ α α  

 Thus ( )( )
0

1X j
j J

fs Int fs Cl A
∈

= α α  which implies 

that ( ),X τ  is fuzzy semi nearlyα −  compact. Now 

let ( ),X τ   be fuzzy semi nearlyα −  nearly 
compact. Then for every fuzzy semi openα −  cover 

{ }:jA j J∈  of 𝑋𝑋, there exists a finite subset 0J  of 

J  such that ( )( )
0

1 .j X
j J

fs Int fs Cl A
∈

α α =  Since 

( )( ) ( )j jfs Int fs Cl A fs Cl Aα α ⊆ α  for each 0 ,j J∈  

( )( ) ( )
0 0

1 .X j j
j J j J

fs Int fs Cl A fs Cl A
∈ ∈

= α α ⊆ α   

Hence ( )
0

1 .j X
j J

fs Cl A
∈

α =  Hence ( ),X τ  is fuzzy 

semi .compactα −   
 
THEOREM 5.5. Let ( ),X τ  be a fuzzy semi 

almostα −  compact space and fuzzy semi 
.regularα −  Then ( ),X τ   is fuzzy semi 
.compactα −  

PROOF. Let { }:jA j J∈  be fuzzy semi openα −  

cover of 𝑋𝑋 such that  1 .j X
j J

A
∈

=  Since ( ),X τ  is 

fuzzy semi ,regularα −  

( ) ( ){ }, :j j j jA B Fs O X fs Cl B A= ∈ α τ α ⊆  for 

each  .j J∈   Since 1X =  1X j
j J

B
∈

=   and  ( ),X τ   is 

fuzzy semi almostα −  compact, there exists a finite 
set 0J J⊆  such that ( )

0

1 .j X
j J

fs Cl B
∈

α =  But 

( )j jfs Cl B Aα ⊆  and 

( ) ( )j jfs Int fs Cl B fs Cl B α α ⊆ α   for each 

0 .j J∈   We have  ( )
0 0

1 .j j X
j J j J

A fs Cl B
∈ ∈

⊇ α =   

Thus,  
0

1 .j X
j J

A
∈

=   Hence ( ),X τ   is fuzzy semi 

.compactα −  
 
THEOREM 5.6. Let ( ),X τ  be a fuzzy semi 

nearlyα −  compact space and fuzzy semi  
.regularα −   Then ( ),X τ  is fuzzy semi 
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.compactα −  

PROOF.  Let { }:jA j J∈   be fuzzy semi  openα −  

cover of 𝑋𝑋 such that 1 .j X
j J

A
∈

=  Since ( ),X τ   is 

fuzzy semi ,regularα −   

( ) ( ){ }, :j j j jA B Fs O X fs Cl B A= ∈ α τ α ⊆  for 

each .j J∈  Since 1X j
j J

B
∈

=   and ( ),X τ  is fuzzy 

semi nearlyα −  compact, there exists a finite set 

0J J⊆  such that ( )
0

1 .j X
j J

fs Int fs Cl B
∈

 α α =   

But  ( ) ( ) .j j jfs Int fs Cl B fs Cl B A α α ⊆ α ⊆   We 

have ( )
0 0

1 .j j X
j J j J

A fs Int fs Cl B
∈ ∈

 ⊇ α α =     Thus, 

0

1 .j X
j J

A
∈

=  Hence ( ),X τ  is fuzzy semi 

.compactα −   
 
 
THEOREM 5.7. A fuzzy topological space ( ),X τ  
is fuzzy semi almostα −  compact, if and only if, 
for every family { }:jA j J∈  of fuzzy  semi 

openα −  sets having the FIP, ( ) 0 .j X
j J

fs Cl A
∈

α ≠   

PROOF. Let { }:jA j J∈  be a family of fuzzy semi 

openα −  sets having the FIP. Suppose that 

( ) 0 .j X
j J

fs Cl A
∈

α =  and then 

( ) ( ) 1 .
c c

j j X
j J j J

fs Cl A fs Int A
∈ ∈

  α = α =    
    Since 

( ),X τ  is fuzzy semi almostα −  compact, there 
exists a finite subset 0J J⊆  such that 

( )
0

1 .c
Xjj J

fs Cl fs Int A
∈

 α α =  
  This implies that 

( )( ) ( )( )
0 0

cc

j jj J j J
fs Cl fs Int fs Cl fs ClA A

∈ ∈
α α = α α 

1 .X=  Thus, ( )( )
0

0 .j X
j J

fs Int fs Cl A
∈

α α =  But 

( ) ( ) .j j jA fs Int A fs Int fs Cl A = α ⊆ α α    

This implies that 
0

0j X
j J

A
∈

=  which is in 

contradiction with FIP of the family.  
Conversely, let { }:jA j J∈  be a family of fuzzy 

semi openα −  sets such that 
0

1 .j X
j J

A
∈

=   Suppose 

that there does not exist a finite subset 0J J⊆  such 

that ( )
0

1 .j X
j J

fs Cl A
∈

α =  Since 

( ){ }:
c

jfs Cl A j J α ∈   has the FIP, then 

( )
0

0 .
c

j X
j J

fs Cl fs Cl A
∈

 α α ≠   This implies 

( )( ) 1 .
cc

j X
j J

fs Cl fs Cl A
∈

 α α ≠  
  Hence 

( )( ) 1 .
c

j X
j J

fs Int fs Cl A
∈

α α ≠  Since 

( )j jA fs Int fs Cl A ⊆ α α   for each ,j J∈  

1j X
j J

A
∈

≠  which is in contradiction with 

1 .j X
j J

A
∈

=   

 
 
THEOREM 5.8. Let ( ),X τ  and ( ),Y σ  be fuzzy 

topological spaces and let ( ) ( ): , ,f X Yτ → σ  

be fuzzy semi  * continuousα − , surjective 
mapping. If ( ),X τ  is fuzzy semi almostα −  

compact space then so is ( ), .Y σ  

PROOF. Let ( ) ( ): , ,f X Yτ → σ  be fuzzy 
* continuousα −  mapping of a fuzzy almostα −  

compact space ( ),X τ  onto a fuzzy topological 

space ( ), .Y σ  Let { }:jA j J∈   be any fuzzy semi 

openα −  cover of ( ), .Y σ  Then ( ){ }1 :jf A j J− ∈  

is a fuzzy semi openα −  cover of 𝑋𝑋. Since 𝑋𝑋 is 
fuzzy semi almostα −  compact, there exists a finite 
subset 0J  of J  such that 

( )
0

1 1 .j X
j J

fs Cl f A−

∈
 α =   Now ( )1Xf =  

( ) ( )
0 0

1 1
j j

j J j J
f fs Cl f A f fs Cl f A− −

∈ ∈

      α = α      
 
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1 .Y=  But ( ) ( )1 1
j jfs Cl f A f fs Cl A− −   α ⊆ α     

and from the surjectivity of 

( )( ) ( )( )1 1
j jf fs Cl f A f f fs Cl A− −   α ⊆ α =   

( ) .jfs Cl Aα  

So ( ) ( )( )
0 0

1 1 .j j Y
j J j J

fs Cl A f fs Cl f A−

∈ ∈

 α ⊇ α =     

Thus ( )
0

1 .j Y
j J

fs Cl A
∈

α =  Hence ( ),Y σ  is fuzzy 

semi almostα −  compact.  
 
 
THEOREM 5.9. Let ( ),X τ  and ( ),Y σ  be fuzzy 

topological spaces and let ( ) ( ): , ,f X Yτ → σ  
be fuzzy semi  continuousα − , surjective mapping. 
If ( ),X τ  is fuzzy semi almostα −  compact space 

then ( ),Y σ  is fuzzy semi almost compact.  

PROOF. Let { }:jA j J∈  be any fuzzy open cover 

of ( ), .Y σ  Then ( ){ }1 :jf A j J− ∈  is a fuzzy semi 

openα −  cover of 𝑋𝑋. Since 𝑋𝑋 is fuzzy semi 
almostα −  compact, there exists a finite subset 0J  

of J  such that ( ){ }1
0: 1 .j Xfs Cl f A j J− α ∈ =   

Now from the surjectivity of f , 

( ) ( )( )
0

11 1Y X j
j J

f f fs Cl f A−

∈

 = = α ⊆  
  

( )( ) ( )( )
0 0

1 1
j

j J j J
f fs Cl f A fs Cl f f A− −

∈ ∈

   α ⊆ α      

( )( )( ) ( )
0 0

1 ,j j
j J j J

Cl f f A Cl A−

∈ ∈

 ⊆ ⊆  
   which 

implies that ( )
0

1 .i Y
j J

Cl A
∈

=  Hence  ( ),Y σ  is 

fuzzy almost compact. 
DEFINITION 5.10. Let ( ),X τ  and ( ),Y σ  be 
fuzzy topological spaces. A function 

( ) ( ): , ,f X Yτ → σ  is said to be fuzzy semi  
weaklyα −  continuous if, for each fuzzy semi 
openα −  set V in Y, 

( ) ( )( )1 1 .f V fs Int f fs Cl V− − ⊆ α α    

THEOREM 5.11. A mapping 
( ) ( ): , ,f X Yτ → σ  from a fuzzy topological 

space ( ),X τ  to a fuzzy topological space ( ),Y σ  is 
fuzzy strongly semi openα −  if and only if 

( ) ( ) .f fs Int V fs Int f V   α ⊆ α      

PROOF. If f  is fuzzy strongly semi openα −   
mapping then ( )f fs Int V α    is a fuzzy semi 

openα −  set in 𝑌𝑌 for fuzzy semi openα −  set 𝑉𝑉 in 
𝑋𝑋. Hence 

( ) ( )( )( )f fs Int V fs Int f fs Int V  α = α α =     

( ) .fs Int f V α    Thus 

( ) ( ) .f fs Int V fs Int f V   α ⊆ α     

Conversely, let 𝑉𝑉 be a fuzzy semi openα −  set in  𝑋𝑋 
and then ( ) .V fs Int V= α  Then by hypothesis, 

( ) ( ) ( ) .f V f fs Int V fs Int f V   = α ⊆ α      This 

implies that ( )f V  is fuzzy semi openα −  set in Y.  

 
 
THEOREM 5.12. Let ( ),X τ  and ( ),Y σ  be fuzzy 

topological spaces and let ( ) ( ): , ,f X Yτ → σ  
be fuzzy semi weaklyα −  continuous, surjective 
mapping. If ( ),X τ  is fuzzy semi compactα −  

space, then ( ),Y σ  is fuzzy semi almostα −  
compact.  
PROOF.  Let { }:jA j J∈  be fuzzy semi  openα −  

cover of 𝑌𝑌 such that 1 .j Y
j J

A
∈

=  Then 

( ) ( )1 1 1
.1 1j j Y X

j J j J
f A f A f− − −

∈ ∈

 = = = 
 

   ( ),X τ  

is fuzzy semi ,compactα −  and there exists a finite 

subset 0J  of J such that ( )
0

1 1 .j X
j J

f A−

∈
=  Since 𝑓𝑓 

is fuzzy semi weaklyα −  
continuous.

( ) ( )( )1 1
j jf A fs Int f fs Cl A− − ⊆ α α ⊆   

( )1 .jf fs Cl A−  α    This implies that 
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( ) ( )
0 0

1 1 1 .j j X
j J j J

f fs Cl A f A− −

∈ ∈
 α ⊇ =    Thus 

( )
0

1 1 .j X
j J

f fs Cl A−

∈
 α =   Since f  is surjective, 

( ) ( )( )
0

11 1Y X j
j J

f f f fs Cl A−

∈

 = = α =  
  

( )( ) ( )
0 0

1 .j j
j J j J

f f fs Cl A fs Cl A−

∈ ∈

 α = α     Hence 

( )
0

1 .j Y
j J

fs Cl A
∈

α =  It follows that  ( ),Y σ  is 

fuzzy semi almostα −  compact.  
 
 
THEOREM 5.13. Let ( ),X τ  and ( ),Y σ  be fuzzy 

topological spaces and let ( ) ( ): , ,f X Yτ → σ  
be fuzzy semi  * ,continuousα −  surjective and 
strongly openα −  mapping. If  ( ),X τ  is fuzzy 

semi nearlyα −  compact space then so is  ( ), .Y σ   

PROOF. Let { }:jA j J∈  be any fuzzy openα −  

cover of ( ), .Y σ  Since f  is fuzzy semi 

* ,continuousα −  then ( ){ }1 :jf A j J− ∈   is a 

fuzzy openα −  cover of 𝑋𝑋. Since ( ),X τ  is fuzzy 
semi nearlyα −  compact, there exists a finite 
subset 0J  of J such that 

( )( )
0

1 1 .j X
j J

fs Int fs Cl f A−

∈

 α α =   Since f  is 

surjective,  

( ) ( )( )( )
0

11 1Y X j
j J

f f fs Int fs Cl f A−

∈

 = = α α =  


( )( )( )
0

1 .j
j J

f fs Int fs Cl f A−

∈

 α α  
   Since f  is 

fuzzy semi strongly ,openα −  

( )( )( )1
jf fs Int fs Cl f A− α α ⊆  

( )( )( )1
jfs Int f fs Cl f A− α α  

 for each .j J∈  

Since   f  is fuzzy semi * ,continuousα −  then 

( )( ) ( )( )1 1 .j jf fs Cl f A fs Cl f f A− −   α ⊆ α     

Hence we have  

( )( )
0

11Y j
j J

f fs Int fs Cl f A−

∈

  = α α ⊆   
  

( )( )
0

1
j

j J
fs Int fs Cl f A−

∈
 α α ⊆   

( )( )( )
0

1
j

j J
fs Int fs Cl f f A−

∈

 α α =   

( )
0

.j
j J

fs Int fs Cl A
∈

 α α   Thus 

( )
0

1 .Y j
j J

fs Int fs Cl A
∈

 = α α   

Hence ( ),Y σ  is fuzzy semi nearlyα −  compact.  
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